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Abstract
We consider quantum mechanics with non-Hermitian quasi-diagonalizable
Hamiltonians, i.e. the Hamiltonians having a number of Jordan cells, in
particular, biorthogonal bases. The ‘self-orthogonality’ phenomenon is
clarified in terms of a correct spectral decomposition and it is shown that
‘self-orthogonal’ states never jeopardize a resolution of identity and thereby
quantum averages of observables. The example of a complex potential leading
to one Jordan cell in the Hamiltonian is constructed and its origin from level
coalescence is elucidated. Some puzzles with zero-binorm bound states in a
continuous spectrum are unravelled with the help of a correct resolution of
identity.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ge

1. Introduction

The variety of complex potentials in quantum physics is associated typically with open
systems when a control of information is partially lost and thereby the unitarity of observable
evolution is broken. For this class of quantum systems, the energy eigenvalues may have
an imaginary part which signals the opening of new channels not directly measured in a
given experiment. In this context, non-Hermitian interactions have been used in field theory
and statistical mechanics for many years with applications to condensed matter, quantum
optics and hadronic and nuclear physics [1–4]. The subject of non-self-adjoint operators
has been also under intensive mathematical investigations [5–7], in particular, interesting
examples of non-Hermitian effective Hamiltonian operators have been found for the Faddeev
equations [8].
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An important class of complex Hamiltonians deals with a real spectrum [9, 10],
in particular, in the PT-symmetric quantum mechanics [11–14] and its pseudo-Hermitian
generalization [15, 16]. Scattering problems for such Hamiltonians have been investigated in
[4, 17] .

For complex, non-Hermitian potentials the natural spectral decomposition exploits the
sets of biorthogonal states [18], and within this framework one can discover new features that
never happen for closed systems with Hermitian Hamiltonians possessing a real spectrum3,
namely, certain Hamiltonians may not be diagonalizable [26] with the help of biorthogonal
bases and can be reduced only to a quasi-diagonal form with a number of Jordan cells [15].
Such a feature can be realized by a level crossing which, in fact, occurs (after some kind of
complexification) in atomic and molecular spectra [26] and optics [27] (see more examples
in [28]) as well as in PT-symmetric quantum systems [29–31]. In this case, some eigenstates
seem to be ‘self-orthogonal’ with respect to a binorm [28, 32]. The latter quite intriguing
phenomenon has been interpreted as a sort of phase transition [28] .

The main purpose of the present work is to clarify the ‘self-orthogonality’ in terms of
a correct spectral decomposition both for discrete and continuous spectra and to show that,
at least, in one-dimensional quantum mechanics such states never jeopardize a resolution of
identity for the discrete or bound state spectrum and thereby do not affect quantum averages
of observables.

We start introducing the notion of biorthogonal basis and, correspondingly, the resolution
of identity for a non-Hermitian diagonalizable Hamiltonian. In section 2 the appearance
of associated functions is discussed and in section 3 the non-diagonalizable (but quasi-
diagonalizable) Hamiltonians with finite-size Jordan cells are analysed. Special attention
is paid to the definition of a biorthogonal diagonal basis and the meaning of zero-binorm
states is clarified. Namely, it is shown that the apparent self-orthogonality of eigenfunctions
and associated functions is misleading as they never replicate themselves as relative pairs in a
diagonal resolution of identity. Instead, the ‘self-orthogonality’ involves the different elements
in the related basis thereby being addressed to a conventional orthogonality. The construction
of such biorthogonal bases with pairs of mutually complex-conjugated base functions is
described. In section 4 another representation of non-diagonalizable Hamiltonians, manifestly
symmetric under transposition is given, compatible with the diagonal resolution of identity. In
section 5 the example of a (transparent) complex potential leading to the non-diagonalizable
Hamiltonian with one Jordan 2 × 2 cell is constructed and its origin from level coalescence is
illustrated.

On the other hand, some puzzles with zero-binorm bound states arise in a continuous
spectrum and they are unravelled in section 6 with the help of a correct resolution of identity.
Its proof is relegated to the appendix. In section 7 we complete our analysis with discussion
of singularities in the spectral parameter for resolvents and of scattering characteristics for
previous examples. We conclude with some proposals for probabilistic interpretation of
wavefunctions defined with respect to a biorthogonal basis which does not allow any negative
or zero-norm states.

There are certain links of our approach to the works [33] on Jordan cells associated with the
occurrence of non-Hermitian degeneracies for essentially Hermitian Hamiltonians where the
description has been developed for complex eigenvalue Gamow states (resonances) unbounded

3 An exception concerns the action of the Hamiltonian operator on zero-mode subspaces of supercharges in nonlinear
SUSY [19–23]. For confluent NSUSY, a Hermitian Hamiltonian may produce a non-Hermitian matrix, with Jordan
cells [24, 25] after quasi-diagonalization. In this case, zero-mode subspaces of supercharges also include non-
normalizable solutions of the Schrödinger equation which do not belong to the energy spectrum of the original
self-adjoint Hamiltonian.
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in their asymptotics and, in general, not belonging to the Hilbert space. In contrast, we instead
examine non-Hermitian Hamiltonians with normalizable bound and associated states.

In our paper we deal with complex one-dimensional potentials V (x) �= V ∗(x) and
respectively with non-Hermitian Hamiltonians h of the Schrödinger type, defined on the real
axis:

h ≡ −∂2
x + V (x), (1)

which are assumed to be t-symmetric or self-transposed under the t transposition operation,
h = ht . Only scalar local potentials will be analysed which are obviously symmetric under
transposition (for some matrix non-diagonalizable problems, see [32, 34]). Throughout this
work the units will be used with m = 1/2, h̄ = 1, c = 1 which leads to dimensionless energies.

Let us first define a class of one-dimensional non-Hermitian diagonalizable Hamiltonian
h with a discrete spectrum such that

(a) a biorthogonal system {|ψn〉, |ψ̃n〉} exists,

h|ψn〉 = λn|ψn〉, h†|ψ̃n〉 = λ∗
n|ψ̃n〉, 〈ψ̃n|ψm〉 = 〈ψm|ψ̃n〉 = δnm, (2)

(b) the complete resolution of identity in terms of these bases and the spectral decomposition
of the Hamiltonian hold,

I =
∑

n

|ψn〉〈ψ̃n|, h =
∑

n

λn|ψn〉〈ψ̃n|. (3)

In the coordinate representation,

ψn(x) = 〈x|ψn〉, ψ̃n(x) = 〈x|ψ̃n〉, (4)

the resolution of identity has the form

δ(x − x ′) = 〈x ′|x〉 =
∑

n

ψn(x
′)ψ̃∗

n(x). (5)

The differential equations,

hψn = λnψn, h†ψ̃n = λ∗
nψ̃n, (6)

and the fact that there is only one normalizable eigenfunction of h for the eigenvalue λn (up to
a constant factor), allow one to conclude that

ψ̃∗
n(x) ≡ αnψn(x), αn = const �= 0. (7)

Hence, the system {|ψn〉, |ψ̃n〉} can be redefined,

|ψn〉 → 1√
αn

|ψn〉, |ψ̃n〉 → √
α∗

n|ψ̃n〉, (8)

so that

ψ̃∗
n(x) ≡ ψn(x),

∫ +∞

−∞
ψn(x)ψm(x) dx = δnm. (9)

We stress that the non-vanishing binorms in equation (9) support the completeness of this
basis, i.e. the resolution of identity:

δ(x − x ′) =
∑

n

ψn(x)ψn(x
′). (10)

Indeed if some of the states in equation (10) were ‘self-orthogonal’ (as has been accepted in
[32]), i.e. had zero binorms in (9), the would-be unity in (10) would annihilate such states
thereby signalling the incompleteness.
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2. Non-diagonalizable Hamiltonians and zero-binorm states

For complex Hamiltonians one can formulate the extended eigenvalue problem, searching not
only for normalizable eigenfunctions but also for normalizable associated functions for the
discrete part of the energy spectrum. Some related problems have been known for a long time
in mathematics of linear differential equations (see, for instance, [35]).

Let us give the formal definition.

Definition. The function ψn,i(x) is called a formal associated function of the ith order of the
Hamiltonian h for a spectral value λn, if

(h − λn)
i+1ψn,i ≡ 0, (h − λn)

iψn,i �≡ 0, (11)

where ’formal’ emphasizes that a related function is not necessarily normalizable.

In particular, the associated function of zero order ψn,0 is a formal eigenfunction of h
(a solution of the homogeneous Schrödinger equation, not necessarily normalizable).

Let us single out normalizable associated functions and the case when h maps them into
normalizable functions. Evidently, this may occur only for non-Hermitian Hamiltonians. Then
for any normalizable associated functions ψn,i(x) and ψn′,i ′(x), the transposition symmetry
holds ∫ +∞

−∞
hψn,i(x)ψn′,i ′(x) dx =

∫ +∞

−∞
ψn,i(x)hψn′,i ′(x) dx. (12)

Furthermore, one can prove the following relations:∫ +∞

−∞
ψn,i(x)ψn′,i ′(x) dx ≡ (ψ∗

n,i , ψn′,i ′) = 0, λn �= λn′ , (13)

where (. . . , . . .) is a scalar product.
As well, let us take two normalizable associated functions ψn,k(x) and ψn,k′(x) so that,

in general, k �= k′ and there are two different sequences of associated functions for i � k and
i ′ � k′

ψn,i(x) = (h − λn)
k−iψn,k(x), ψn,i ′(x) = (h − λn)

k′−i ′ψn,k′(x). (14)

Then∫ +∞

−∞
ψn,i(x)ψn,i ′(x) dx = (ψ∗

n,i , ψn,i ′) = 0, i + i ′ � max{k, k′} − 1. (15)

In particular, for some normalizable associated function ψn,l(x), the ‘self-orthogonality’ [32]
is realized,∫ +∞

−∞
ψ2

n,l(x) dx = 0, ψn,l(x) = (h − λ)i−lψn,i(x), l = 0, . . . ,
[ i − 1

2

]
. (16)

Thus, when assigning [28] the probabilistic meaning for the binorm (�∗, �), one comes to a
conclusion that a sort of intriguing phase transition occurs in such a system, signalled by the
puzzling divergence of some averages of observables,

〈O〉 = (ψ∗
n,l, Oψn,l)

(ψ∗
n,l, ψn,l)

=
∫ +∞
−∞ ψn,l(x)Oψn,l(x) dx∫ +∞

−∞ ψ2
n,l(x) dx

→ ∞. (17)

All the above relations are derived from the symmetry of a Hamiltonian under transposition and
the very definition of associated functions and therefore the existence of self-orthogonal states
seems to be inherent for any non-diagonalizable Hamiltonians with normalizable associated
functions.
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3. Towards resolution of puzzle with self-orthogonal states for Hamiltonians
with finite-size Jordan cells

Let us show that the puzzle with self-orthogonal states may appear, in fact, due to
misinterpretation of what are the pairs of orthogonal states in a true biorthogonal basis.
We proceed to the special class of Hamiltonians for which the spectrum is discrete and there
is a complete biorthogonal system {|ψn, a, i〉, |ψ̃n, a, i〉} such that

h|ψn, a, 0〉 = λn|ψn, a, 0〉, (h − λn)|ψn, a, i〉 = |ψn, a, i − 1〉,
h†|ψ̃n, a, pn,a − 1〉 = λ∗

n|ψ̃n, a, pn,a − 1〉,
(h† − λ∗

n)|ψ̃n, a, pn,a − i − 1〉 = |ψ̃n, a, pn,a − i〉,
(18)

where n = 0, 1, 2, . . . is an index of an h eigenvalue λn, a = 1, . . . , dn is an index
of a Jordan cell (block) for the given eigenvalue λn, dn is a number of Jordan cells for
λn, i = 0, . . . , pn,a − 1 is an index of an associated function in the Jordan cell with indices
n, a and pn,a is a dimension of this Jordan cell. We have taken a general framework which
is also applicable for matrix and/or multidimensional Hamiltonians. But the main results of
this and the next sections are guaranteed only for scalar one-dimensional Hamiltonians with
local potentials.

We remark that the number dn is called a geometric multiplicity of the eigenvalue λn. For
a scalar one-dimensional Schrödinger equation, it cannot normally exceed 1 (but may reach 2
in specific cases of periodic potentials and of potentials unbounded from below). In turn, the
sum

∑
a pn,a is called an algebraic multiplicity of the eigenvalue λn.

The completeness implies the biorthogonality relations (in line with the enumeration of
states |ψ̃n, a, i〉 given in (18))

〈ψ̃n, a, i|ψm, b, j 〉 = δnmδabδij (19)

and the resolution of identity

I =
+∞∑
n=0

dn∑
a=1

pn,a−1∑
i=0

|ψn, a, i〉〈ψ̃n, a, i|. (20)

The spectral decomposition for the Hamiltonian can be constructed as well,

h =
+∞∑
n=0

dn∑
a=1

λn

pn,a−1∑
i=0

|ψn, a, i〉〈ψ̃n, a, i| +
pn,a−2∑

i=0

|ψn, a, i〉〈ψ̃n, a, i + 1|
 . (21)

It represents the analogue of the block-diagonal Jordan form for arbitrary non-Hermitian
matrices [36].

If existing such biorthogonal systems are not unique. Indeed, relations (18) remain
invariant under the group of triangle transformations:

|ψ ′
n, a, i〉 =

∑
0�j�i

αij |ψn, a, j 〉, |ψ̃ ′
n, a, k〉 =

∑
k�l�pn,a−1

βkl|ψ̃n, a, l〉, (22)

where the matrix elements must obey the following equations:

αij = αi+1,j+1 = αi−j,0, α00 �= 0,

βkl = βk+1,l+1 = βk−l+pn,a−1,pn,a−1, βpn,a−1,pn,a−1 �= 0.
(23)

Biorthogonality (19) restricts the choice of pairs of matrices α̂ and β̂ in (22) to be

α̂β̂† = β̂†α̂ = I. (24)
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This freedom in the redefinition of the biorthogonal basis is similar to equation (8) and it
can be exploited to define the pairs of biorthogonal functions ψn,a,i(x) ≡ 〈x|ψn, a, i〉 and
ψ̃n,a,i (x) ≡ 〈x|ψ̃n, a, i〉, in accordance with (9). However, one has to take into account
our enumeration of associated functions ψn,a,i(x) versus their conjugated ones ψ̃n,a,i (x) as is
introduced in equations (18):

ψn,a,i(x) = ψ̃∗
n,a,pn,a−i−1(x) ≡ 〈ψ̃n, a, pn,a − i − 1|x〉. (25)

Then the analogue of equation (9) reads∫ +∞

−∞
ψn,a,i(x)ψm,b,pm,b−j−1(x) dx = δnmδabδij . (26)

We stress that this kind of biorthogonal systems is determined uniquely up to an overall sign.
In these terms, it becomes clear that relations (15) have the meaning of orthogonality of

some off-diagonal pairs in the biorthogonal system {|ψn, a, i〉, |ψ̃n, a, j 〉} as

ψn,a,i(x) = (h − λn)
pn,a−1−iψn,a,pn,a−1(x),

ψ̃∗
n,a,j (x) = ψn,a,pn,a−1−j (x) = (h − λn)

jψn,a,pn,a−1(x).
(27)

When comparing with specification of indices in equation (15), one identifies pn,a − 1 − j ↔
i, i ↔ i ′. In both cases k = k′ = pn,a − 1 . Then inequality (15) singles out off-diagonal
binorms, i � j − 1. From equation (27) it follows that in order to have all diagonal binorms
non-vanishing, it is sufficient to prove that at least one of them is not zero because∫ +∞

−∞
ψn,a,0(x)ψn,a,pn,a−1(x) dx =

∫ +∞

−∞
[(h − λn)

pn,a−1ψn,a,pn,a−1(x)]ψn,a,pn,a−1(x) dx

=
∫ +∞

−∞
ψn,a,i(x)ψn,a,pn,a−1−i (x) dx �= 0. (28)

The latter is necessary for the completeness of the basis (because of the absence of self-
orthogonal pairs of basis elements made of bound and associated functions when the resolution
of identity is diagonal).

Going back to the definition of quantum-state averages of certain observables, we realize
that the matrix element used in (17) is not diagonal and therefore this relation cannot be
interpreted as an average (compare with [28, 32]) of a putative order-parameter-like operator.

4. t-symmetric representation of non-diagonalizable Hamiltonians

We still note that the biorthogonal basis (25) does not provide a manifestly t-symmetric
representation of the Hamiltonian (which is symmetric under transposition h = ht in the
coordinate representation as a finite-order differential operator). One can obtain another
biorthogonal basis using the canonical set of (normalizable) associated functions given by
equation (18) and their complex conjugates in an analogy to (8). It can be achieved by means
of renumbering of conjugated elements of the biorthogonal system (18):

|ψ̂n, a, j 〉 = |ψ̃n, a, pn,a − j − 1〉, j = 0, . . . , pn,a − 1. (29)

Eventually, one arrives at the t-symmetric spectral decomposition for h:

h =
+∞∑
n=0

dn∑
a=1

λn

pn,a−1∑
j=0

|ψn, a, j 〉〈ψ̂n, a, pn,a − j − 1|

+
pn,a−2∑

i=0

|ψn, a, j 〉〈ψ̂n, a, pn,a − j − 2|
 , (30)
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which looks like a Jordan decomposition along the secondary diagonal. Evidently in the
coordinate representation the Hamiltonian operator is manifestly t-symmetric when the special
biorthogonal basis (25),

ψn,a,j (x) = ψ̂∗
n,a,j (x) ≡ 〈ψ̂n, a, j |x〉, (31)

is chosen.
But the resolution of identity in this case is not diagonal,

I =
+∞∑
n=0

dn∑
a=1

pn,a−1∑
j=0

|ψn, a, j 〉〈ψ̂n, a, pn,a − j − 1|, (32)

although t-symmetric. One can diagonalize this resolution of identity by a non-degenerate
orthogonal transformation � of sub-bases in each non-diagonal sub-block,

|ψn, a, j 〉 =
pn,a−1∑
k=0

�jk|ψ ′
n, a, k〉, 〈ψ̂n, a, j | =

pn,a−1∑
k=0

�jk〈ψ̂ ′
n, a, k|, (33)

retaining the type of basis (31). Then one finds a number of eigenvalues ±1. In order to come
to the canonical form of basis (19), one has to rotate by the complex unit i the pairs in the
basis (31) normalized on −1. Evidently, the combination of the transformation � and such a
rotation contains complex elements and is not orthogonal.

The remaining freedom of basis redefinition with the help of orthogonal rotations cannot
provide the consequent diagonalization of the symmetric Hamiltonian matrix in each non-
diagonal block. The reason is that some of the eigenvectors of the Hamiltonian sub-matrices
have zero binorms, in particular, those which are related to the true Hamiltonian eigenfunctions.
Thus, while being a t-symmetric operator with symmetric matrix representation, the
Hamiltonian remains essentially non-diagonalizable4.

We remark that in the general case the existence and the completeness of a biorthogonal
system is not obvious (especially if the continuous spectrum is present) and needs a careful
examination. In particular, at the border between discrete and continuous spectra and in the
continuous spectrum itself, one can anticipate to have puzzling states with non-trivial role in
the spectral decomposition. These peculiarities will be discussed in the following sections.

5. A model with non-diagonalizable Hamiltonian and its origin from level coalescence

In this section we build a model5 with non-Hermitian Hamiltonian which has a real continuous
spectrum and, in addition, possesses a Jordan cell spanned on the bound state and a
normalizable associated state. This model does not belong to the class of Hamiltonians
with a purely discrete spectrum considered in the preceding sections, but being block-diagonal
it inherits some of their properties in the bound state sector. Further on, we demonstrate how
this kind of degeneracy arises from coalescence of a pair of non-degenerate levels.

4 We note that a similar symmetric representation for the Hamiltonian has been exemplified in a specific model with
one eigenstate and one associated function [31].
5 All Hamiltonians considered in this and the following sections can be constructed with the help of SUSY methods
[24, 25, 37] and are intertwined with the Hamiltonian of a free particle by differential operators of the first or second
order.
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5.1. Jordan cell for a bound state

The model Hamiltonian contains the potential with coordinates selectively shifted into a
complex plane:

h = −∂2 − 16α2 α(x − z)sh(2αx) − 2ch2(αx)

[sh(2αx) + 2α(x − z)]2
, α > 0, z ∈ C, Im z �= 0. (34)

This Hamiltonian is not PT-symmetric unless Re z = 0 . It has the Jordan cell, spanned by the
normalizable eigenfunction ψ0(x) and associated function ψ1(x) on the level λ1 = −α2,

ψ0(x) = (2α)3/2ch(αx)

sh(2αx) + 2α(x − z)
, ψ1(x) = 2α(x − z)sh(αx) − ch(αx)√

2α[sh(2αx) + 2α(x − z)]
, (35)

hψ0 = λ1ψ0, (h − λ1)ψ1 = ψ0. (36)

In turn, the eigenfunctions of h for a continuous spectrum read

ψ(x; k) = 1√
2π

[
1 +

ik

α2 + k2

W ′(x)

W(x)
− 1

2(α2 + k2)

W ′′(x)

W(x)

]
eikx,

k ∈ R, hψ(x; k) = k2ψ(x; k), W(x) = sh(2αx) + 2α(x − z).

(37)

The eigenfunctions and the associated function of h obey the biorthogonality relations,∫ +∞

−∞
ψ2

0,1(x) dx = 0,

∫ +∞

−∞
ψ0(x)ψ1(x) dx = 1,∫ +∞

−∞
ψ0,1(x)ψ(x; k) dx = 0,

∫ +∞

−∞
ψ(x; k)ψ(x;−k′) dx = δ(k − k′).

(38)

The functions ψ0(x), ψ1(x) can be obtained by analytical continuation of ψ(x; k) in k,

lim
k→±iα

[(k2 + α2)ψ(x; k)] = ∓
√

α

π
ψ0(x), (39)

lim
k→±iα

{
1

2k

∂

∂k
[(k2 + α2)ψ(x; k)]

}
= ∓

√
α

π

[
ψ1(x) − 1 ∓ 2αz

4α2
ψ0(x)

]
. (40)

For this model, the resolution of identity built of eigenfunctions and associated functions of h
can be obtained by conventional Green function methods:

δ(x − x ′) =
∫ +∞

−∞
ψ(x; k)ψ(x ′; −k) dk + ψ0(x)ψ1(x

′) + ψ1(x)ψ0(x
′). (41)

With the help of Dirac notations,

〈x|ψ, k〉 = ψ(x; k), 〈x|ψ̃, k〉 = ψ∗(x;−k), (42)
〈x|ψ0,1〉 = ψ0,1(x), 〈x|ψ̂0,1〉 = ψ∗

0,1(x), (43)

this resolution of identity can be represented in the operator form,

I =
∫ +∞

−∞
|ψ, k〉〈ψ̃, k| dk + |ψ0〉〈ψ̂1| + |ψ1〉〈ψ̂0|. (44)

Evidently, the basis |ψ̂1,2〉 corresponds to the basis |ψ̂n, a, i〉 of section 4 and therefore gives
the t-symmetric spectral decomposition for the Hamiltonian,

h =
∫ +∞

−∞
k2|ψ, k〉〈ψ̃, k|dk − α2|ψ0〉〈ψ̂1| − α2|ψ1〉〈ψ̂0| + |ψ0〉〈ψ̂0|. (45)
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The diagonalization of the resolution of identity (44) may be arranged in two different
ways. First, one can exploit the scheme of section 3 performing renumeration of certain
elements of conjugated basis,

h†|ψ̃1〉 = λ1|ψ̃1〉, (h† − λ1)|ψ̃0〉 = |ψ̃1〉, h†|ψ̃, k〉 = k2|ψ̃, k〉,
namely,

〈x|ψ, k〉 = ψ(x; k), 〈x|ψ̃, k〉 = ψ∗(x;−k), (46)

〈x|ψ0,1〉 = ψ0,1(x), 〈x|ψ̃0,1〉 = ψ∗
1,0(x). (47)

With this notation, the resolution of identity reads

I =
∫ +∞

−∞
|ψ, k〉〈ψ̃, k| dk + |ψ0〉〈ψ̃0| + |ψ1〉〈ψ̃1|. (48)

We stress that |ψ̃1,2〉 are related to the basis |ψ̃n, a, i〉 in section 3. The relevant spectral
decomposition of the Hamiltonian takes the quasi-diagonal form with one Jordan cell,

h =
∫ +∞

−∞
k2|ψ, k〉〈ψ̃, k| dk − α2|ψ0〉〈ψ̃0| − α2|ψ1〉〈ψ̃1| + |ψ0〉〈ψ̃1|. (49)

On the other hand, the resolution of identity (44) can be diagonalized by complex non-
degenerate rotations, i.e. by using the construction of section 4. The relevant basis is given
by

�1(x) = 1√
2

[

ψ0(x) +

ψ1(x)




]
, �2(x) = i√

2

[

ψ0(x) − ψ1(x)




]
,

ψ0,1 = 
∓1 �1 ∓ i�2√
2

,

∫ +∞

−∞
�2

1,2(x) dx = 1,∫ +∞

−∞
�1(x)�2(x) dx = 0,

∫ +∞

−∞
�1,2(x)ψ(x; k) dx = 0,

(50)

where 
 is an arbitrary constant. The resolution of identity becomes diagonal,

δ(x − x ′) =
∫ +∞

−∞
ψ(x; k)ψ(x ′; −k) dk + �1(x)�1(x

′) + �2(x)�2(x
′),

or in the operator form,

I =
∫ +∞

−∞
|ψ, k〉〈ψ̃, k| dk + |�1〉〈�̃1| + |�2〉〈�̃2|, (51)

where again the Dirac notations have been used,

〈x|�1,2〉 = �1,2(x), 〈x|�̃1,2〉 = �∗
1,2(x). (52)

Accordingly, the manifestly t-symmetric spectral decomposition of h can be easily obtained:

h =
∫ +∞

−∞
k2|ψ, k〉〈ψ̃, k| dk −

(
α2 − 1

2
2

)
|�1〉〈�̃1| −

(
α2 +

1

2
2

)
|�2〉〈�̃2|

− i

2
2
|�2〉〈�̃1| − i

2
2
|�1〉〈�̃2|. (53)

Note that it cannot be diagonalized further, since the symmetric 2 × 2 matrix in (53),(
−α2 + 1

2
2 − i
2
2

− i
2
2 −α2 − 1

2
2

)
, (54)



10216 A V Sokolov et al

has one degenerate eigenvalue −α2 and possesses only one eigenvector et = (1,−i), with
zero norm et · e = 0. Its existence means that the orthogonal non-degenerate matrix required
for diagonalization cannot be built conventionally from a set of eigenvectors. Evidently, this
vector e maps the pair of basis functions �1, �2 into the self-biorthogonal eigenstate of the
Hamiltonian ψ0. However, its partner in the biorthogonal basis is ψ1 with 〈ψ̂1|ψ0〉 = 1. Thus,
the existence of the zero-norm vector e does not entail the breakdown of the resolution of
identity.

5.2. Level coalescence for complex coordinates

The Hamiltonian h with a Jordan cell for bound state (34) can be obtained as a limiting case,
of the Hamiltonian hβ with two non-degenerate bound states (of algebraic multiplicity 1),
corresponding β = 0:

hβ = −∂2 − 16α2
α2+β2

2αβ
sh(2αx)sh(2β(x − z)) − 2ch2(αx)ch(2β(x − z)) + 2sh2(β(x − z))[

sh(2αx) + α
β

sh(2β(x − z))
]2 ,

z ∈ C, Im z �= 0, α > 0 (or − iα > 0), 0 � β <
π

2 Im z
, β �= α.

(55)

For this Hamiltonian hβ , there are two normalized eigenfunctions for bound states:

ψ+(x) =
√

2iα

√
1

β
+

1

α

ch((α − β)x + βz)

sh(2αx) + α
β

sh(2β(x − z))
,

ψ−(x) =
√

2α

√
1

β
− 1

α

ch((α + β)x − βz)

sh(2αx) + α
β

sh(2β(x − z))
,

(56)

with eigenvalues,

hβψ± = λ±ψ±, λ± = −(α ± β)2. (57)

The eigenfunctions of hβ for a continuous spectrum take the form

ψ(x; k) =
[
α2 + β2 + k2 + ik W ′(x)

W(x)
− 1

2
W ′′(x)

W(x)

]
eikx

√
2π

√
(k2 + α2 + β2)2 − 4α2β2

,

k ∈ R, hβψ(x; k) = k2ψ(x; k), W(x) = sh(2αx) +
α

β
sh(2β(x − z)),

(58)

where the branch of
√

(k2 + α2 + β2)2 − 4α2β2 is defined by the condition√
(k2 + α2 + β2)2 − 4α2β2 = k2 + o(k2), k → ∞

in the complex k-plane with cuts, linking branch points situated in the upper (lower) half-plane.
One can show that the biorthogonal relations hold,∫ +∞

−∞
ψ2

±(x) dx = 1,

∫ +∞

−∞
ψ+(x)ψ−(x) dx = 0,

∫ +∞

−∞
ψ±(x)ψ(x; k) dx = 0.

The analytical continuation of eigenfunctions for a continuous spectrum provides the
bound state functions,

lim
k→±i(α+β)

[
√

(k2 + α2 + β2)2 − 4α2β2ψ(x; k)] = ±2iαβ√
π

√
1

β
+

1

α
e∓βzψ+(x),

lim
k→±i(α−β)

[
√

(k2 + α2 + β2)2 − 4α2β2ψ(x; k)] = ∓2αβ√
π

√
1

β
− 1

α
e±βzψ−(x).

(59)



Non-Hermitian quantum mechanics 10217

Now let us coalesce two levels λ± in the limit of β → 0. One can see that the eigenfunction
ψ0(x) and the associated function ψ1(x) of h (see subsection 5.1) can be derived from ψ±(x)

as follows:

ψ0(x) = −2i
√

α lim
β→0

[
√

βψ+(x)] = 2
√

α lim
β→0

[
√

βψ−(x)],

ψ1(x) = 2
√

α lim
β→0

∂
∂β

[
√

β(ψ−(x) + iψ+(x))]
∂
∂β

(λ− − λ+)
.

(60)

The resolution of identity for β �= 0 takes the conventional form

δ(x − x ′) = ψ+(x)ψ+(x
′) + ψ−(x)ψ−(x ′) +

∫ +∞

−∞
ψ(x; k)ψ(x;−k) dk

and in the limit of β → 0 one can reveal that in the case of α > 0

lim
β→0

[ψ+(x)ψ+(x
′) + ψ−(x)ψ−(x ′)] = ψ0(x)ψ1(x

′) + ψ1(x)ψ0(x
′), (61)

i.e. the resolution of identity (41) is reproduced.

6. Puzzles with zero-binorm bound states in the continuum

In what follows we develop another type of models in which the continuous spectrum is
essentially involved in a non-diagonal part of a Hamiltonian and elaborate the resolution
of identity. First, we built the model with a self-orthogonal bound state which however is
essentially entangled with the lower end of the continuous spectrum. As a consequence,
the self-orthogonality does not lead to infinite average values of observables like kinetic or
potential energies if these averages are treated with the help of wave packet regularization.

Conventionally, the continuous spectrum physics deals with reflection and transmission
coefficients whose definition implies the existence of two linearly independent scattering
solutions for a given spectral parameter. The second model provides an example when this is
not realized for a non-Hermitian Hamiltonian defined on the whole axis.

6.1. Non-Hermitian Hamiltonian with normalizable bound state at the continuum threshold

Let us now consider the Hamiltonian

h = −∂2 +
2

(x − z)2
, Im z �= 0. (62)

The eigenfunctions of h for the continuous spectrum can be explicitly found,

ψ(x; k) = 1√
2π

[
1 − 1

ik(x − z)

]
eikx, k ∈ R\{0}, hψ(x; k) = k2ψ(x; k). (63)

In addition, there is a normalizable eigenfunction of h at the threshold of the continuous
spectrum,

ψ0(x) = 1

(x − z)
= −

√
2π lim

k→0
[ikψ(x; k)], hψ0 = 0. (64)

Evidently, the eigenfunctions of h satisfy the biorthogonality relations,∫ +∞

−∞
[ikψ(x; k)][−ik′ψ(x;−k′)] dx = k2δ(k − k′), (65)
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where the bound state wavefunction is included at the bottom of the continuous spectrum due
to (64). Thus, this very eigenfunction has a zero binorm:∫ +∞

−∞
ψ2

0 (x) dx = 0, (66)

raising up the puzzle of ‘self-orthogonality’ [28].
In order to unravel this puzzle, we examine the resolution of identity made of

eigenfunctions of h:

δ(x − x ′) =
∫
L

ψ(x; k)ψ(x ′; −k) dk, (67)

where the contour L must be a proper integration path in the complex k-plane which allows us
to regularize the singularity in (63) for k = 0, for instance, an integration path, obtained from
the real axis by its displacement near the point k = 0 up or down.

To reach an adequate definition of the resolution of identity, one can instead use the
Newton–Leibnitz formula and rewrite (67) in the form

δ(x − x ′) =
(∫ −ε

−∞
+

∫ +∞

ε

)
ψ(x; k)ψ(x ′; −k) dk

− ψ0(x)ψ0(x
′)

πε
+

sin ε(x − x ′)
π(x − x ′)

+
2 sin2

[
ε
2 (x − x ′)

]
πε(x − x0)(x ′ − x0)

, ε > 0. (68)

One can show that the limit of the third term on the right-hand side of (68) (as a distribution
function) at ε ↓ 0 is zero for any test function from C∞

R
∩ L2(R), but the limit of the

last term on the right-hand side of (68) for ε ↓ 0 is zero only for test functions from
C∞

R
∩ L2(R; |x|γ ), γ > 1. Thus, for test functions from C∞

R
∩ L2(R; |x|γ ), γ > 1, the

resolution of identity can be reduced to

δ(x − x ′) = lim
ε↓0

[(∫ −ε

−∞
+

∫ +∞

ε

)
ψ(x; k)ψ(x ′; −k) dk − ψ0(x)ψ0(x

′)
πε

]
, (69)

and for test functions from C∞
R

∩ L2(R) to

δ(x − x ′) = lim
ε↓0

{(∫ −ε

−∞
+

∫ +∞

ε

)
ψ(x; k)ψ(x ′; −k) dk

− 1

πε

[
1 − 2 sin2

(ε

2
(x − x ′)

)]
ψ0(x)ψ0(x

′)
}
. (70)

Decomposition (69) seems to have a more natural form than (70), but its right-hand side
obviously cannot reproduce the normalizable eigenfunction

ψ0(x) �∈ C∞
R

∩ L2(R; |x|γ ), γ > 1

because of the orthogonality relations (65). Indeed, the identity holds

lim
ε↓0

∫ +∞

−∞

2

πε
sin2

(ε

2
(x − x ′)

)
ψ2

0 (x)ψ0(x
′) dx = lim

ε↓0
[e−iεx ′

ψ0(x
′)] = ψ0(x

′). (71)

Hence, it is the third term on the right-hand side of (70) that provides the opportunity to
reproduce ψ0(x) and thereby to complete the resolution of identity. Thus, one concludes that
the state ψ0(x) is inseparable from the bottom of the continuous spectrum and the resolution
of identity in this sense is not diagonal.

We note that the Hamiltonian (62) is PT-symmetric and can be derived from the
Hamiltonian (34) in the limit α → 0, but the parameter z must be taken as a half of z

from (34).
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We also remark that the Hamiltonian (62) makes sense also for arbitrary coupling constants
of ‘centrifugal’ potential, and for the following set,

h = −∂2 +
n(n + 1)

(x − z)2
, (72)

with positive n, the Jordan cell, spanned by
[

n+1
2

]
normalizable eigenfunction and associated

functions, appears at the threshold of the continuous spectrum,

hψ0 = 0, hψj = ψj−1, j = 0, . . . ,

[
n − 1

2

]
,

ψj (x) = (2(n − j) − 1)!!

(2j)!!(2n − 1)!!(x − z)n−2j
.

(73)

All these zero-energy bound and associated states have zero binorms and are biorthogonal to
each other (the multiple puzzle of ‘self-orthogonality’). The resolution of identity in such
cases can be derived in a similar way although its form will be more cumbersome.

6.2. Expectation values (e.v.) of kinetic and potential energies in the vicinity of zero–energy
bound state

As the binorm of the bound state (64) vanishes, it seems that the quantum averages of basic
observables like the kinetic K or potential V energy in this system described by the Hamiltonian
(62) h = K + V tend to diverge. But it is, in fact, not the case. Indeed, the e.v.’s of these
observables vanish as well:

hψ0(x) = 0, 〈ψ̃0|V |ψ0〉 = −〈ψ̃0|K|ψ0〉 =
∫ ∞

−∞
dx

2

(x − z)4
= 0. (74)

Thus, one comes to the classical uncertainty of 0/0 type. In order to unravel it, one has to
build a wave packet which reproduces the function ψ0 in the limit of its form parameters. We
choose the Gaussian wave packet,

ψε(x) =
∫ ∞

−∞

dk√
πε

(
−ik +

1

x − z

)
exp

(
ikx − k2

ε

)
=

(
−∂ +

1

x − z

)
exp

(
−ε

x2

4

)
=

(
ε
x

2
+

1

x − z

)
exp

(
−ε

x2

4

)
, (75)

which evidently approaches uniformly ψ0 when ε ↓ 0 . The binorm of this wave packet,

〈ψ̃ε |ψε〉 =
√

π

8
ε1/2, (76)

rapidly vanishes when ε ↓ 0 .
In turn the e.v. of the total energy,

〈ψ̃ε |H |ψε〉 =
√

9π

128
ε3/2, (77)

decreases with ε ↓ 0 faster than the normalization (76). The e.v. of the potential energy,

〈ψ̃ε |V |ψε〉 = −
√

25π

36
ε3/2, (78)

behaves as the total energy and therefore the e.v. for the kinetic energy decreases also as ε3/2,
much faster than the binorm (76). Thus, one concludes that their ratios, i.e. the quantum
averages of the kinetic and potential energies, vanish for the self-orthogonal bound state in
contrast to the superficial divergence. Therefore, the puzzle with self-orthogonality is resolved.



10220 A V Sokolov et al

6.3. Hamiltonian with bound state in continuum

Let us force the bound state energy −α2 in the Hamiltonian (34) to move towards the continuous
spectrum, α → iα. Then for the Hamiltonian,

h = −∂2 + 16α2 α(x − z) sin(2αx) + 2 cos2(αx)

[sin(2αx) + 2α(x − z)]2
, α > 0, z ∈ C, Im z �= 0,

(79)

on the level λ1 = α2 in the continuous spectrum, one finds the Jordan cell, spanned by the
normalizable eigenfunction ψ0(x) and the associated function ψ1(x), whose asymptotics for
x → ±∞ correspond to superposition of incoming and outgoing waves (standing wave),

ψ0(x) = cos(αx)

sin(2αx) + 2α(x − z)
, ψ1(x) = 2α(x − z) sin(αx) + cos(αx)

4α2[sin(2αx) + 2α(x − z)]
, (80)

hψ0 = λ1ψ0, (h − λ1)ψ1 = ψ0. (81)

The asymptotics of the associated state is given by the standing wave,

ψ1(x) = i

8α2
[e−iαx − eiαx] + O

(
1

x

)
, x → ±∞,

but it does not appear in the resolution of identity (see below). Thereby, this associated state
does not belong to the physical state space.

In turn, the eigenfunctions of h for the scattering spectrum read

ψ(x; k) = 1√
2π

[
1 +

ik

k2 − α2

W ′(x)

W(x)
− 1

2(k2 − α2)

W ′′(x)

W(x)

]
eikx,

k ∈ R\{α,−α}, hψ(x; k) = k2ψ(x; k), W(x) = sin(2αx) + 2α(x − z).

(82)

Then one can check that the eigenfunctions and associated functions of h obey the relations∫ +∞

−∞
[(k2 − α2)ψ(x; k)][((k′)2 − α2)ψ(x;−k′)] dx = (k2 − α2)2δ(k − k′),∫ +∞

−∞
ψ0(x)ψ1(x) dx = 0,

∫ +∞

−∞
ψ1(x)ψ(x; k) dx = 0.

(83)

The last equation is understood in the sense of distributions. The limit of ψ(x; k) at k → ∓α

gives the elements of the Jordan cell ψ0(x) and ψ1(x),

lim
k→∓α

[(k2 − α2)ψ(x; k)] = ∓ 4iα2

√
2π

ψ0(x), (84)

lim
k→∓α

[
1

2k

∂

∂k
((k2 − α2)ψ(x; k))

]
= ∓ 4 iα2

√
2π

[
ψ1(x) +

1 ∓ 2iαz

4α2
ψ0(x)

]
. (85)

For this model, the resolution of identity made of eigenfunctions and associated functions of
h can be obtained by conventional Green function methods,

δ(x − x ′) =
∫
L

ψ(x; k)ψ(x ′; −k) dk, (86)

where L is an integration path in the complex momentum plane, obtained from real axis by its
simultaneous displacement near the points k = ±α up or down.
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For test functions from C∞
R

∩ L2(R; |x|γ ), γ > 1, this resolution of identity can be
presented in the form

δ(x − x ′) = lim
ε↓0

[(∫ −α−ε

−∞
+

∫ α−ε

−α+ε

+
∫ +∞

α+ε

)
ψ(x; k)ψ(x ′; −k) dk − 1

πεα
ψ0(x)ψ0(x

′)
]

,

(87)

and for test functions from C∞
R

∩ L2(R) it must be extended,

δ(x − x ′) = lim
ε↓0

{(∫ −α−ε

−∞
+

∫ α−ε

−α+ε

+
∫ +∞

α+ε

)
ψ(x; k)ψ(x ′; −k) dk

− 1

πεα

[
1 − 2 sin2

(ε

2
(x − x ′)

)]
ψ0(x)ψ0(x

′)
}

(88)

(cf with (70)). One can see that operator (87) projects away the normalizable eigenfunction

ψ0(x) �∈ C∞
R

∩ L2(R; |x|γ ), γ > 1,

because of the orthogonality relations (83). Meanwhile, operator (88) is complete and acts on
this eigenfunction as an identity. Thus, one concludes again that the state ψ0(x) is inseparable
from the continuous spectrum and the resolution of identity in this sense is not diagonal.

7. Resolvents and scattering characteristics

The peculiar spectral properties and the specific pattern of level degeneracy for non-
diagonalizable Hamiltonians have interesting consequences for the structure of their resolvents
and scattering matrices.

In all the above examples the Green functions can be calculated conventionally, as follows:

G(x, x ′; λ) = π i√
λ

ψ(x>;
√

λ)ψ(x<;−
√

λ), x> = max{x, x ′}, x< = min{x, x ′},
(89)

where the solutions ψ are made by analytical continuation of ψ(x; k) in k into the complex
plane, and the branch of

√
λ is uniquely defined by the condition Im

√
λ � 0 in the plane

with the cut on the positive part of the real axis. In virtue of (58) the Green function for the
diagonalizable Hamiltonian of subsection 5.2 has two poles of the first order (if β �= 0) at
the points λ = −(α ± β)2, where α can be either real or imaginary. If β → 0 and level
confluence emerges, two poles coalesce into one pole of the second order in both cases (37)
and (82) when λ = ∓|α|2. However, the examples of subsections 5.1 and 6.2 have different
meaning: in the first case, the double pole does not appear on the physical cut λ > 0 and its
order enumerates the rank of the Jordan cell. In contrast, in the second case the double pole
is placed exactly on the cut λ > 0 and strictly speaking signifies the spectral pathology as
it generates only one eigenstate with the eigenvalue λ = |α|2 in resolution of identity. The
second state—the associated function—represents a standing wave and does not influence
the spectral decomposition. In the example of subsection 6.1, the Green function has only a
branch point at λ = 0 of the following type λ−3/2. This branch point can be thought of as a
confluence of the double pole in the variable

√
λ and the branch point of order λ−1/2 .

From the explicit form of wavefunctions, one can see that all potentials in sections 5
and 6 are transparent as the reflection coefficient is zero. The transmission coefficient in the
non-degenerate case of subsection 5.2 takes the form

T (k) =


β2+(k+iα)2

β2+(k−iα)2 , 0 < β < α,

α2+(k+iβ)2

α2+(k−iβ)2 , −iα > 0.
(90)
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In different limits, one can derive the transmission coefficients for three other Hamiltonians.
Namely, when β → 0 and α > 0 (subsections 5.1), the scattering is described by

T (k) =
(

k + iα

k − iα

)2

, (91)

and for β → 0 and α → 0 or imaginary (subsections 6.1 and 6.2) the scattering is absent,

T (k) = 1. (92)

Thus, the colliding particle in such cases is not ‘influenced’ by the bound states in the
continuum.

8. Conclusions

In this paper we have presented a thorough analysis of the phenomenon of apparent self-
orthogonality of some eigenstates for non-Hermitian Hamiltonians. For the discrete part of an
energy spectrum, it has been shown that such a phenomenon should take place only for non-
diagonalizable Hamiltonians, the spectrum of which consists not only of eigenfunctions but
also of associated functions. However, the genuine diagonal biorthogonal basis related to the
spectral decomposition of such Hamiltonians normally does not contain pairs made of the same
eigenfunctions or the associated functions of the same order. Rather they are complementary;
for instance, the eigenfunctions in the direct basis are paired to those associated functions in
the conjugated basis, which have the maximal order in the same Jordan cell. One possible
exception exists for the Jordan cells of odd order where one basis pair consists of the same
function which is not self-orthogonal.

The situation in the continuous spectrum is more subtle, namely, the spectral
decomposition does not include any obvious Jordan cells and associated functions. However,
we have established that when a zero-binorm normalizable state arises it remains inseparable
from the nearest scattering states of the continuum and eventually the existence of this state
does not destroy the completeness of the resolution of identity.

Finally, let us outline the measurability of quantum observables and, for this purpose,
prepare a wave packet,

|ψ〉 =
∑∫

r

Cr |ψr〉, Cr = const, (93)

where the possibility of having a continuous spectrum is made explicit in the notation and, for
brevity, all indices enumerating eigenvalues, Jordan cells and their elements are encoded in
the index r ≡ {n, a, j}.

In order to perform the quantum averaging of an operator of observable O, one can
use the conventional Hilbert space scalar product and the complex-conjugated wavefunction,
〈ψ |x〉 = 〈x|ψ〉∗ . In this way one defines the wave packet of the conjugated state and,
respectively, the average values of the operator O:

〈ψ | =
∑∫

r

C∗
r 〈ψr |, O = 〈ψ |O|ψ〉

〈ψ |ψ〉 , (94)

so that the average values O remain finite as 〈ψ |ψ〉 > 0.
On the other hand, the use of complete biorthogonal bases {|ψr〉, 〈ψ̃r |} from

section 3 (or {|ψr〉, 〈ψ̂r |} from section 4) seems to be more suitable to describe a non-Hermitian
evolution. Accordingly, to supply the wave packet binorm with a probabilistic meaning one
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may introduce [18] the wave packet partner in respect to a binorm with complex-conjugated
coefficients, in order that its binorm was always positive,

〈ψ̃ | ≡
∑∫

r

C∗
r 〈ψ̃r |, 〈ψ̃ |ψ〉 =

∑∫
r

C∗
r Cr > 0. (95)

For such a definition, the averages of an operator of the observable Õ = 〈ψ̃ |O|ψ〉/〈ψ̃ |ψ〉
cannot be infinite and the phenomena of (pseudo) phase transitions at the level crossing [28]
cannot appear. In this relation, the basis from section 4 with 〈ψ̂r | may be used equally well.

However, one has to keep in mind that such a definition of probabilities, to some extent,
depends on a particular set of biorthogonal bases. We hope to examine this approach and its
applications elsewhere.
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Appendix

Let CLγ = C∞
R

∩ L2(R; |x|γ ), γ � 0, be the space of test functions. The sequence
ϕn(x) ∈ CLγ is called convergent in CLγ to ϕ(x) ∈ CLγ ,

limγ
n→+∞

ϕn(x) = ϕ(x) (A.1)

if

lim
n→+∞

∫ +∞

−∞
|ϕn(x) − ϕ(x)|2|x|γ dx = 0, (A.2)

and for any x1, x2 ∈ R, x1 < x2,

lim
n→+∞ max

[x1,x2]
|ϕn(x) − ϕ(x)| = 0. (A.3)

We shall denote the value of a functional f on ϕ ∈ CLγ conventionally as (f, ϕ). A
functional f is called continuous if for any sequence ϕn ∈ CLγ convergent in CLγ to zero
the equality ,

lim
n→+∞(f, ϕn) = 0, (A.4)

is valid. The space of distributions over CLγ , i.e. of linear continuous functionals over CLγ

is denoted as CL′
γ . The sequence fn ∈ CL′

γ is called convergent in CL′
γ to f ∈ CLγ ,

lim′
γ

n→+∞
fn = f, (A.5)

if for any ϕ ∈ CLγ the relation takes place,

lim
n→+∞(fn, ϕ) = (f, ϕ). (A.6)
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A functional f ∈ CL′
γ is called regular if there is f (x) ∈ L2(R; (1 + |x|γ )−1) such that

for any ϕ ∈ CLγ the equality

(f, ϕ) =
∫ +∞

−∞
f (x)ϕ(x) dx (A.7)

holds. In this case we shall identify the distribution f ∈ CL′
γ with the function

f (x) ∈ L2(R; (1 + |x|γ )−1). In virtue of the Bunyakovskii inequality,∣∣∣∣∫ +∞

−∞
f (x)ϕ(x) dx

∣∣∣∣2

�
∫ +∞

−∞

|f 2(x)| dx

1 + |x|γ
∫ +∞

−∞
|ϕ2(x)|(1 + |x|γ ) dx, (A.8)

it is evident that L2(R; (1 + |x|γ )−1) ⊂ CL′
γ .

Let us also note that the Dirac delta function δ(x − x ′) belongs to CL′
γ , γ � 0.

Lemma 1. Suppose that (1)

ψ(x; k) = 1√
2π

[
1 − 1

ik(x − z)

]
eikx;

(2) L(A) is a path in the complex plane of k, made of the segment [−A,A] of the real axis
by deformation of its central part up or down of zero and the positive direction of L(A) is
specified from −A to A and (3) x ′ ∈ R, γ � 0, ε > 0. Then the following relations hold:

lim′
γ

A→+∞

∫
L(A)

ψ(x; k)ψ(x ′; −k) dk = δ(x − x ′), (A.9)

lim′
γ

A→+∞

(∫ −ε

−A

+
∫ A

ε

)
ψ(x; k)ψ(x ′; −k) dk = δ(x − x ′) −

∫
L(ε)

ψ(x; k)ψ(x ′; −k) dk.

(A.10)

Proof. In accordance with the Newton–Leibnitz formula, one obtains∫
L(A)

ψ(x; k)ψ(x ′; −k) dk = 1

π

[
sin A(x − x ′)

x − x ′ − cos A(x − x ′)
A(x − z)(x ′ − z)

]
. (A.11)

Integral (A.11) as a function of x belongs to L2(R; (1 + |x|γ )−1) and therefore to CL′
γ . Thus,

to prove (A.9) it is sufficient to establish that for any ϕ(x) ∈ CLγ the equality takes place,

lim
A→+∞

1

π

∫ +∞

−∞

[
sin A(x − x ′)

x − x ′ − cos A(x − x ′)
A(x − z)(x ′ − z)

]
ϕ(x) dx = ϕ(x ′). (A.12)

By virtue of the Bunyakovskii inequality∣∣∣∣∫ +∞

−∞

cos A(x − x ′)
A(x − z)(x ′ − z)

ϕ(x) dx

∣∣∣∣2

� 1

A2

∫ +∞

−∞

dx

|x − z|2|x ′ − z|2
∫ +∞

−∞
|ϕ2(x)| dx, (A.13)

wherefrom it follows that

lim
A→+∞

1

π

∫ +∞

−∞

[
sin A(x − x ′)

x − x ′ − cos A(x − x ′)
A(x − z)(x ′ − z)

]
ϕ(x) dx

= lim
A→+∞

1

π

∫ +∞

−∞

sin A(x − x ′)
x − x ′ ϕ(x) dx. (A.14)

In virtue of the Riemann theorem and due to the evident inclusions
ϕ(x)

x − x ′ ∈ L1(R\]x ′ − δ, x ′ + δ[),
ϕ(x) − ϕ(x ′)

x − x ′ ∈ L1([x
′ − δ, x ′ + δ])
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for any δ > 0, the following relations are valid:

lim
A→+∞

(∫ x ′−δ

−∞
+

∫ +∞

x ′+δ

)
sin A(x − x ′)

ϕ(x)

x − x ′ dx = 0,

lim
A→+∞

∫ x ′+δ

x ′−δ

sin A(x − x ′)
ϕ(x) − ϕ(x ′)

x − x ′ dx = 0.

(A.15)

Hence,

lim
A→+∞

1

π

∫ +∞

−∞

sin A(x − x ′)
x − x ′ ϕ(x) dx = ϕ(x ′)

π
lim

A→+∞

∫ x ′+δ

x ′−δ

sin A(x − x ′)
x − x ′ dx = ϕ(x ′)

and in view of (A.14) equations (A.12) and (A.9) hold. equation (A.10) follows from
equation (A.9) and from additivity of classical path integrals. Lemma 1 is proved. �

Lemma 2. For any x ′ ∈ R and γ � 0, the relation

lim′
γ

ε↓0

sin ε(x − x ′)
x − x ′ = 0, γ � 0, (A.16)

takes place.

Proof. It is true that

sin ε(x − x ′)
x − x ′ ∈ L2(R; (1 + |x|γ )−1) ⊂ CL′

γ , γ � 0.

Thus, to prove the lemma it is sufficient to establish that for any ϕ(x) ∈ CLγ , γ � 0, the
relation

lim
ε↓0

∫ +∞

−∞

sin ε(x − x ′)
x − x ′ ϕ(x) dx = 0 (A.17)

is valid. But its validity follows from the Bunyakovskii inequality:∣∣∣∣∫ +∞

−∞

sin ε(x − x ′)
x − x ′ ϕ(x) dx

∣∣∣∣2

�
∫ +∞

−∞

sin2 ε(x − x ′)
(x − x ′)2

dx

∫ +∞

−∞
|ϕ2(x)| dx

= ε

∫ +∞

−∞

sin2 τ

τ 2
dτ

∫ +∞

−∞
|ϕ2(x)| dx → 0, ε ↓ 0. (A.18)

Lemma 2 is proved. �

Lemma 3. For any z ∈ C, Im z �= 0, x ′ ∈ R and γ > 1, the following relation holds,

lim′
γ

ε↓0

sin2
[

ε
2 (x − x ′)

]
ε(x − z)(x ′ − z)

= 0, γ > 1. (A.19)

Proof. It is evident that

sin2
[

ε
2 (x − x ′)

]
ε(x − z)(x ′ − z)

∈ L2(R; (1 + |x|γ )−1) ⊂ CL′
γ , γ > 1.

Thus, to prove the lemma it is sufficient to establish that for any ϕ(x) ∈ CLγ , γ > 1, the
equality

lim
ε↓0

∫ +∞

−∞

sin2
[

ε
2 (x − x ′)

]
ε(x − z)(x ′ − z)

ϕ(x) dx = 0 (A.20)
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holds. This equality can be obtained from the chain of inequalities∣∣∣∣∣
∫ +∞

−∞

sin2
[

ε
2 (x − x ′)

]
ε(x − z)(x ′ − z)

ϕ(x) dx

∣∣∣∣∣
2

�
∫ +∞

−∞

sin4
[

ε
2 (x − x ′)

]
dx

ε2|x − z|2|x ′ − z|2(1 + |x|γ )

×
∫ +∞

−∞
|ϕ2(x)|(1 + |x|γ ) dx �

∫ +∞

−∞

(ε/2)2+min{2,(γ−1)/2}|x − x ′|2+min{2,(γ−1)/2} dx

ε2|x − z|2|x ′ − z|2(1 + |x|γ )

×
∫ +∞

−∞
|ϕ2(x)|(1 + |x|γ ) dx → 0, ε↓0, (A.21)

derived with the help of the Bunyakovskii inequality and trivial inequalities | sin τ | �
1, | sin τ | � |τ |, τ ∈ R. Lemma 3 is proved. �

Corollary 1. Let us define∫
L

ψ(x; k)ψ(x ′; −k) dk = lim′
γ

A→+∞

∫
L(A)

ψ(x; k)ψ(x ′; −k) dk, (A.22)

where L is a path, made by deformation of the real axis near zero up or down. Then in view
of (A.9) the resolution of identity (67) holds.

Corollary 2. Using the Newton–Leibnitz formula, one can rewrite the integral∫
L(ε)

ψ(x; k)ψ(x ′; −k) dk in the form∫
L(ε)

ψ(x; k)ψ(x ′; −k) dk = − 1

πε(x − z)(x ′ − z)
+

sin ε(x − x ′)
π(x − x ′)

+
2 sin2

[
ε
2 (x − x ′)

]
πε(x − z)(x ′ − z)

.

(A.23)

Thus, if by definition(∫ −ε

−∞
+

∫ +∞

ε

)
ψ(x; k)ψ(x ′; −k) dk = lim′

γ

A→+∞

(∫ −ε

−A

+
∫ A

ε

)
ψ(x; k)ψ(x ′; −k) dk, (A.24)

then due to equations (A.10), (A.16), (A.19) and (A.23), the resolutions of identity (69) and
(70) are valid.
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Hernández E, Jáuregui A and Mondragón A 2003 Int. J. Theor. Phys. 42 2167
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